Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202301817, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506188

ABSTRACT

Nowadays, there is a great interest in efficient adsorbent development due to the recent demand for lanthanides, which are widely used in high-tech technology. Alginates, owing to their natural occurrence, gel formation capability, and safety, could be promising feasible adsorbents for lanthanide removal. This study proposes the alginate-cellulose composite as an ecological, sustainable adsorbent for light lanthanide sorption. The structure, morphology, qualitative and quantitative compositions, average diameter, and pHpzc of the composite were discussed in great detail. Using the batch approach, sorption trials were performed to evaluate the metal sorption performance. The maximum lanthanide accumulation was attained at pH 5.0 and a dosage of 0.05 g. The uptake kinetics are successfully explained by the Ho and McKay model, whereas the equilibrium data is best represented by the Langmuir equation. The presence of Cl-, NO3 -, SO4 2-, Ni(II), and Co(II) did not have any impact on the adsorption capacity. In turn, the presence of Fe(III) ions led to a 15 % reduction in the adsorption. The lanthanide ions were eluted from the adsorbent following the treatment with 0.1 M HNO3. The adsorbent retained over 95 % of its initial adsorption capacity after 6 series of sorption/desorption studies.

2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175709

ABSTRACT

In recent years, there has been a significant increase in interest in the use of curdlan, a naturally derived polymer, for medical applications. However, it is relatively inactive, and additives increasing its biomedical potential are required; for example, antibacterial compounds, magnetic particles, or hemostatic agents. The stability of such complex constructs may be increased by additional functional networks, for instance, polycatecholamines. The article presents the production and characterization of functional hydrogels based on curdlan enriched with Fe3O4 nanoparticles (NPs) or Fe3O4-based heterostructures and poly(L-DOPA) (PLD). Some of the prepared modified hydrogels were nontoxic, relatively hemocompatible, and showed high antibacterial potential and the ability to convert energy with heat generation. Therefore, the proposed hydrogels may have potential applications in temperature-controlled regenerative processes as well as in oncology therapies as a matrix of increased functionality for multiple medical purposes. The presence of PLD in the curdlan hydrogel network reduced the release of the NPs but slightly increased the hydrogel's hemolytic properties. This should be taken into account during the selection of the final hydrogel application.


Subject(s)
Hydrogels , Levodopa , Hydrogels/chemistry , Polymers/chemistry , Anti-Bacterial Agents
3.
Materials (Basel) ; 16(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770065

ABSTRACT

The paper investigated the adsorption of the packed-bed column with the alginate-based adsorbents (ALG-based adsorbents) such as alginate-biochar, alginate-clinoptilolite, alginate-lignin, and alginate-cellulose for La(III) ions' removal. Fixed-bed adsorption studies with various alginate-based adsorbents were carried out and compared to the La(III) ions adsorption. The columns were filled with ALG-based adsorbent beads of approximately 1.1 ± 0.005 mm spherical shapes. The effects of the inlet concentrations on the breakthrough curves were studied in terms of the adsorption performance of the ALG-based adsorbents. The experimental data were correlated with the Adams-Bohart, Yoon-Nelson, Thomas, and Wolborska models to determine the best operational parameters. Based on the comparison of R2 values, the Thomas and Yoon-Nelson models were found to be more suitable than the Adams-Bohart and Wolborska models. In the desorption study, the ALG-based adsorbents packed columns showed the maximum desorption of La(III) just after passing 100 cm3 of 1 mol/dm3 HCl. Overall, the results show that ALG-based adsorbents could be used for continuous recovery of La(III) ions from aqueous solutions and were not only cost-effective but also environmentally friendly.

4.
Materials (Basel) ; 15(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160907

ABSTRACT

The recent increase in interest in rare earth elements is due to their increasing use in many areas of life. However, along with their increasing popularity, the problem of their natural resources availability arises. In this study, an alginate-lignin composite (ALG-L) was fabricated and tested for adsorptive abilities of the rare earth elements (La(III), Ce(III), Pr(III), and Nd(III)) from aqueous solutions. The characterization of the newly synthetized calcium alginate-lignin composite was performed using ATR/FT-IR, SEM, EDX, OM, AFM, XRD, BET, sieve analysis and pHpzc measurements. The adsorption mechanism of the ALG5L1 composite for REEs was analyzed through a series of kinetic, equilibrium and thermodynamic adsorption experiments. Under the optimum sorption conditions, i.e., sorbent mass 0.1 g, pH 5.0, temperature 333 K, the maximum adsorption capacities of the ALG5L1 composite for La(III), Ce(III), Pr(III), and Nd(III) reached 109.56, 97.97, 97.98, and 98.68 mg/g, respectively. The desorption studies indicate that the new calcium alginate-lignin composite is characterized by good recycling properties and can be also reused. To sum up the advantages of low cost, easy synthesis, high adsorption efficiencies and reusability indicate that the ALG5L1 composite has great application perspectives for REEs recovery.

5.
Environ Res ; 191: 110171, 2020 12.
Article in English | MEDLINE | ID: mdl-32919960

ABSTRACT

Increasing the number of applications of rare earth elements (REEs) has led to increased release of these metals into the environment. Removal of REEs from e-wastes is very important considering the increasing demand for these elements, the limited resource availability of them as well as the significant environmental issues. In this present study, optimization of the La(III) ions sorption from acidic solutions on chelating ion exchangers containing different functional groups, i.e. Amberlite IRC748, Purolite S930, Lewatit® Monoplus TP208, Amberlite IRC747, Purolite S940, and Purolite S950, was carried out. The sorption data was analyzed using the Lagergren pseudo-first order, Ho and McKay pseudo-second order, Weber-Morris intraparticle diffusion, Boyd kinetic models, pore and film diffusion coefficients as well as the Langmuir, Freundlich, and Temkin isotherm models. Additionally, thermodynamic parameters and regeneration abilities of chelating ion exchangers were evaluated. The maximum recovery of La(III) ions was found for HNO3 concentration equal to 0.2 mol/dm3. The La(III) ions sorption was fast and sorption equilibrium was achieved after about 60 min. The best fitting for the lanthanum(III) ions sorption was obtained using the pseudo-second order kinetic and Langmuir isotherm models. Moreover, breakthrough curves were obtained from dynamic studies. The physicochemical characterization places special emphasis on determination of chemical composition of ion exchangers using ATR/FT-IR and XPS spectroscopy. Furthermore, characterization parameters of ion exchangers such as surface area and porosity (pore size), point of zero charge, and thermal stability were estimated. Chelating ion exchangers with aminophosphonic functional groups are characterized by the best adsorption properties towards La(III) ions so they could be used for the recovery of rare earth elements from spent battery solutions.


Subject(s)
Lanthanum , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Solutions , Spectroscopy, Fourier Transform Infrared , Thermodynamics
6.
Molecules ; 25(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824060

ABSTRACT

The recovery of La(III) and Ni(II) ions by a macroporous cation exchanger in sodium form (Lewatit Monoplus SP112) has been studied in batch experiments under varying HNO3 concentrations (0.2-2.0 mol/dm3), La(III) and Ni(II) concentrations (25-200 mg/dm3), phase contact time (1-360 min), temperature (293-333 K), and resin mass (0.1-0.5 g). The experimental data revealed that the sorption process was dependent on all parameters used. The maximum sorption capacities were found at CHNO3 = 0.2 mol/dm3, m = 0.1 g, and T = 333 K. The kinetic data indicate that the sorption followed the pseudo-second order and film diffusion models. The sorption equilibrium time was reached at approximately 30 and 60 min for La(III) and Ni(II) ions, respectively. The equilibrium isotherm data were best fitted with the Langmuir model. The maximum monolayer capacities of Lewatit Monoplus SP112 were equal to 95.34 and 60.81 mg/g for La(III) and Ni(II) ions, respectively. The thermodynamic parameters showed that the sorption process was endothermic and spontaneous. Moreover, dynamic experiments were performed using the columns set. The resin regeneration was made using HCl and HNO3 solutions, and the desorption results exhibited effective regeneration. The ATR/FT-IR and XPS spectroscopy results indicated that the La(III) and Ni(II) ions were coordinated with the sulfonate groups.


Subject(s)
Lanthanum/isolation & purification , Nickel/isolation & purification , Water Pollutants, Chemical/isolation & purification , Hydrogen-Ion Concentration , Ion Exchange , Lanthanum/analysis , Nickel/analysis , Temperature , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...